COMBINED EXPOSURES TO LOW ROUNDUP CONCENTRATION INDUCE THIOLOME RESPONSE IN BIVALVE MOLLUSK

V. Khoma, L. Gnatyshyna, V. Martinyuk, T. Mackiv, K. Yunko, R. Formanchuk, V. Baranovskii, M. Gladyuk, L. Manusadžianas, O. Stoliar

Abstract


Glyphosate is a weed killer used worldwide. Its toxicity to aquatic organisms was investigated mostly at acute high levels of exposure. The study aimed at evaluating the effect of low glyphosate concentration in the combination with pharmaceutical or heating to freshwater bivalve mollusks. We exposed the mussels Unio tumidus to glyphosate-based herbicide Roundup MAX (Rn, 16.9 µg L -1 or 40 nM of glyphosate, roughly a half of PNEC (Predicted No Effect Concentration) estimate derived from multispecies data), chlorpromazine (Cpz, 18.0 µg L -1 or 56 nM), the combination of Rn and heating (25 o C, RnT), and the combination of Rn and Cpz (RnCpz) during 14 days. The responses of oxidative stress were evaluated in the digestive gland. The enzyme activities changed only in the exposures containing Rn (increase of superoxide dismutase) and Cpz (decrease of catalase), whereas the elevation of total glutathione (GSH) level was indicated in all exposed groups except Rn and of metallothionein-associated thiols (MTSH) in all groups except Cpz. Analysis of metallothionein by means of size-exclusion chromatography did not indicate substantial oxidative changes in any group. Lipid peroxidation increased in all exposures, maximally up to 16.6%. The total balance of antioxidant versus prooxidative changes increased in all exposures containing Rn (by approx. 3 times in RnT-group), while decreased in the Cpz-group. Hence, combined exposures distort prominently the oxidative stress responses to xenobiotics in the freshwater mussels even at low, nanomolar concentrations. The ability of Rn to induce MTSH seems to be the decisive input in the antioxidant defence of the mussels affected by the mixed physical/chemical exposures.

Keywords


Bivalve mollusk; Roundup; Heating, Chlorpromazine; Antioxidants; Metallothioneins; Thiolome.

Full Text:

PDF

References


Aebi H. Catalase. Methods of enzymatic analysis. London: Academic Press, 1974. P. 671–684.

Archer E., Petrie B., Kasprzyk-Hordern B., Wolfaardt G. M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters.Chemosphere. 2017. Vol. 174. P. 437–446. DOI: doi.org/10.1016/j.chemosphere.2017.01.101

Balderrama-Carmona A. P. et al. Herbicide biomonitoring in agricultural workers in Valle del Mayo, Sonora Mexico. Environ. Sci. Pollut. Res. 2020. 27. P. 28480–28489. DOI: doi.org/10.1007/s11356-019-07087-6

Coppola F., Almeida Â., Henriques B., Soares A. M. Figueira E., Pereira E., Freitas R. Biochemical responses and accumulation patterns of Mytilus galloprovincialis exposed to thermal stress and Arsenic contamination. Ecotoxicology and environmental safety. 2018. Vol. 147. P. 954–62

De Oliveira L. L., Antunes S. C., Gonçalves F., Rocha O., Nunes B. Acute and chronic ecotoxicological effects of four pharmaceuticals drugs on cladoceran Daphnia magna.Drug. Chem. Toxicol.2016. Vol. 39(1). P. 13–21. DOI:10.3109/01480545.2015.1029048.

Frédéric О., Yves Р.Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere. 2014. Vol. 115. P. 31–39. DOI: doi.org/10.1016/j.chemosphere.2014.01.016

Fried R. Enzymatic and non-enzymatic assay ofsuperoxide dismutase. Biochemie.1975. Vol. 57(5). P. 657–660.

Gnatyshyna L., Khoma V., Mishchuk O., Martinyuk V., Spriņģe G., Stoliar O. Multi-marker study of the responses of the Unio tumidus from the areas of small and micro hydropower plants at the Dniester River Basin, Ukraine. Environ Sci Pollut Res. 2020.P. 1–12. DOI: https://doi.org/10.1007/s11356-020-07698-4.

Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980. Vol. 106(1). P. 207-212. DOI: 10.1016/0003-2697(80)90139-6.

Khoma V.V., Gnatyshyna L.L., Martyniuk V.V., Mackiv T.R., Mishchuk N.Y., Stoliar O.B. Metallothioneins contribution to the response of bivalve mollusk to xenobiotics. 2020. Ukr. Biochem. J. Vol. 92(5). Р. 86–96.

Khoma V.,·Gnatyshyna L., Martinyuk V.,·Rarok Yu.,·Mudra A., Stoliar O. BiochemicalresponsesofthebivalvemolluskUniotumidusinhabitinga smallpowerplantreservoiron the DniesterRiverBasin, Ukraine. Bulletin of Environmental Contamination and Toxicology. 2020. Vol. 105. P. 67–75. DOI: doi.org/10.1007/s00128-020-02873-2

Khoma V.V., Martinyuk V.V., Mackiv T.R, Gnatyshyna L.L., Spriņģe G., Stoliar O.B.The effect of roundup on the bivalve Unio tumidus molluskutilizing ex vivo approach. Biol. Stud. 2020. Vol. 14(1). P. 41–50. DOI: doi.org/10.30970/sbi.1401.614

Li P., Snyder G. L., Vanover K. E. Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr. Top. Med. Chem.2016. Vol. 16(29). P. 3385–3403.

Lowry O.H., Rosebroungh H.J., Farr A.L., Randall R.J.. Protein measurement with folin phenol reagent. J. Biol. Chem. 1951. Vol. 193. P. 265–275.

Matozzo V., Fabrello J., Marin M. G. The effects of glyphosate and its commercial formulations to marine invertebrates: a review. Journal of Marine Science and Engineering. 2020. Vol. 8(6). P. 399.

Newton T. J., Cope W.G. Biomarker responses of unionid mussels to environmental contaminants. Freshwater Bivalve Ecotoxicology. Boca Raton: CRC Press, 2007. P. 257–284.

Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979. Vol. 95(2). P. 351-8. DOI: 10.1016/0003-2697(79)90738-3

Payton S. L., Johnson P.D., Jenny M. J. Comparative physiological, biochemical and molecular thermal stress response profiles for two unionid freshwater mussel species. J Exp Biol. 2016. Vol. 219. P. 3562–3574.

Roesijadi G., Fowler B. Purification of invertebrate metallothioneins. Meth. Enzymol. 1991. Vol. 205B. P. 263–273.

Schönbrunn E., Eschenburg S., Shuttleworth W. A., Schloss J. V., Amrhein N., Evans J. N., Kabsch W.Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. 2001. Vol. 98(4). P. 1376–1380. DOI:doi.org/10.1073/pnas.98.4.1376

Stoliar O. B., Lushchak V. I. Environmental pollution and oxidative stress in fish. Oxidative Stress – Environmental Induction and Dietary Antioxidants.2012. P. 131–166.

Stolyar O.B., Myhayliv R.L., Mischuk O.V. The concentration-specific response of metallothioneins in copper-loading freshwater bivalve Anodonta cygnea.Ukr. Biochem. J. 2005. Vol. 77(6). P. 65–69.

Viarengo A., Ponzano E., Dondero F., Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic Molluscs. Mar Environ Res. 1997.Vol. 44. P. 69–84. DOI: https://doi.org/10.1016/S0141-1136(96)00103-1

Zangger K., Shen G., Oz G., Otvos J. D., Armitage I. M. Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain. Biochem J. 2001. Vol. 359(2). P. 353–360. DOI: 10.1042/0264-6021:3590353.




DOI: https://doi.org/10.25128/2078-2357.20.3-4.9

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 V. Khoma, L. Gnatyshyna, V. Martinyuk, T. Mackiv, K. Yunko, R. Formanchuk, V. Baranovskii, M. Gladyuk, L. Manusadžianas, O. Stoliar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.