STUDY OF THE EFFECTIVENESS OF CHLORELLA AGAINST ATTENUATION OF CYTOXIC SIGNS IN ZEBRAFISH EXPOSED TO ORGANOPHOSPHATE PESTICIDES

O. I. Bodnar, S. V. Senko, I. O. Osypenko, I. Khatib, N. M. Kasyanchuk, H. I. Falfushynska

Abstract


The ecological potential of microalgae for purification of aquatic and soil ecosystems and natural restoration of their homeostatic functional state is considered to be high due to the rapid growth and development of algae, their labile and dynamic metabolism and simple growth conditions. The aim of present work was to study the effectiveness of Chlorella as a potential bioremediator to reduce the toxic effects of pesticides, roundup and chlorpyrifos after their individual and complex influence on zebrafish Danio rerio. The effect of environmental concentrations of roundup (15 μg⋅L-1) and chlorpyrifos (0,1 μg⋅L-1) provoked partial depletion of the cell thiols pool when compared to the control, which appeared as a decrease in glutathione transferase activity (under combined exposure) and total glutathione concentration. A decrease in the level of total antioxidant capacity, which was consistent with an increase in the level of reactive oxygen species in the liver tissue was also shown. Meanwhile, the studied organophosphate pesticides didn’t cause severe signs of neurotoxicity, but activated acetylcholinesterase in line with no visual manifestations of locomotion reactions. Chlorpyrifos determined an increase in the concentration of methylglyoxal and the most noticeable sign of endocrine disruption from all studied groups in terms of vitellogenin concentration. Principal component analysis allowed to identify a separate localization of each of the studied groups and the interim position of animals after combined exposure when compared to the individual action. The introduction of Chlorella vulgaris in the exposure media in the amount of about 100 thousand cells / dm3 did not show a significant corrective effect on the toxicity of pesticides for non-target species Danio rerio, which doesn’t exclude the positive impact of algae on the functioning of the ecosystem in general and requires a more detailed analysis.

Keywords


Danio rerio; pesticides; toxicity; chlorella

References


Abdel-Razek M. A., Abozeid A. M., Eltholth M. M., Abouelenien F. A., El-Midany S. A., Moustafa N. Y., Mohamed R. A. Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slovenian Veterinary Research. 2019. Vol. 56, Is. 22. P. 61–74. doi: 10.26873/SVR-744-2019

Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. Vol. 3. Chlorophyta. / P. M. Tsarenko, S. P. Wasser, E. Nevo. Ruggell: Ganter Verlag, 2011. 511 p.

Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985. Vol. 113. Р. 548–555.

Blaise C., Gagne F., Pellerin J., Hansen D. Determination of vitellogenin-like properties in Mya arenaria hemolymph (Saguenay Fjord, Canada): A potential biomarker for endocrine disruption. Environ Toxicol. 1999. Vol. 14. P. 455–465.

Carvalho F. P. Pesticides, environment, and food safety. Food and Energy Security. 2017. Vol. 6, Is. 2. Р. 48–60. doi: 10.1002/fes3.108

Dosnon-Olette R., Trotel-Aziz P., Couderchet M., Eullaffroy P. Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere. 2010. Vol. 79, Is. 2. P. 117–123. https://doi.org/10.1016/j.envpol.2005.12.014

Ellman G. I., Courtney K. D., Andres Jr. V., Featherstone R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961. Vol. 7. P. 88–95. doi: 10.1016/0006-2952(61)90145-9

Falfushynska H. I., Horyn O. I., Fedoruk O. O., Buyak B., et al. Is the presence of Central European strains of Raphidiopsis (Cylindrospermopsis) raciborskii a threat to a freshwater fish? An in vitro toxicological study in common carp cells. Aquatic Toxicology. 2019. Vol. 206. P. 105–113. doi: 10.1016/j.aquatox.2018.11.012

Falfushynska H. I., Horyn O. I., Gnatyshyna L. L., Buyak B. B., Rusnak N. I., Fedoruk O. O., Stoliar O. B. Carassius auratus as a novel model for the hyperglycemia study. Ukr. Biochem. J. 2019. Vol. 91, Is. 4. P. 58–69. DOI: 10.15407/ubj91.04.058

Glyphosate herbicide found in many midwestern streams, antibiotics not common [Electronic resource] URL: https://toxics.usgs.gov/highlights/glyphosate02.html (дата звернення 10.11.2020).

Gonzalez-Barreiro O., Rioboo C., Herrero C., Cid A. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environmental Pollution. 2006. Vol. 44, Is.1. P. 266–271. https://doi.org/10.1016/j.envpol.2005.12.014

Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974. Vol. 249, Is. 22. P. 7130–7139.

Henao E., Murphy P. J., Falfushynska H., Horyn O., Evans D. M., Klimaszyk P., Rzymski P. Polymethoxy-1-alkenes screening of Chlorella and Spirulina food supplements coupled with in vivo toxicity studies. Toxins. 2020. Vol. 12, Is. 2. P. 111. doi: 10.3390/toxins12020111

Hultberg M., Bodin H. Effects of fungal-assisted algal harvesting through biopellet formation on pesticides in water. Biodegradation. 2018. Vol. 29. P. 557–565. https://doi.org/10.1007/s10532-018-9852-y

Jeffries S. K., Abbott K. I., Cowman T., Kolok A. S. Occurrence and endocrine effects of agrichemicals in a small Nebraska, USA, watershed. Environ. Toxicol. Chem. 2011. Vol. 30, Is. 10. P. 2253–2260.

Kabra N. A., Ji M.-K., Choi J., Kim R. J., Govindwar S. P., Jeon B. H. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ. Sci. Pollut. Res. 2014. Vol. 21. Р. 12270–12278. https://doi.org/10.1007/s11356-014-3157-4

Kamata R., Itoh K., Nakajima D., Itoh K., Nakajima D., Kageyama S., Sawabe A., Terasaki M., Shiraishi F. The feasibility of using mosquitofish (Gambusia affinis) for detecting endocrine-disrupting chemicals in the freshwater environment. Environ. Toxicol. Chem. 2011. Vol. 30, Is. 12. P. 2778 –2785.

Karthikeyan R., Davis L. C., Erickson L. E., Al-Khatib K., Kulakow P., Barnes P. L., Hutchinson S. L., Nurzhanova A. A. Potential for plant-based remediation of pesticide-contaminated soil and water using non-target plants such as trees, shrubs, and grasses. Critical reviews in Plant Sciences. 2004. Vol. 23, Is. 1. P. 91–101. doi: 10.1080/07352680490273518

Kavitha P., Rao J. V. Sub-lethal effects of profenofos on tissue-specific antioxidative responses in a Euryhyaline fish, Oreochromis mossambicus. Ecotoxicol. Environ. Saf. 2009. Vol. 72, Is. 6. P. 1727 1733.

Kist L. W., Rosemberg D. B., Pereira T. C., et al. Microcystin-LR acute exposure increases AChE activity via transcriptional ache activation in zebrafish (Danio rerio) brain. Comp. Biochem. Physiol. 2012. Vol. 155C, Is. 2. P. 247–252. https://doi.org/10.1016/j.cbpc.2011.09.002

Kopecka-Pilarczyk J., Correia A. D. Biochemical response in gilthead seabream (Sparus aurata) to in vivo exposure to a mix of selected PAHs. Ecotoxicol. Environ. Saf. 2009. Vol. 72. P. 1296–1302. doi: 10.1016/j.aquatox.2018.11.012

Li Z. H., Zlabek V., Velisek J. R., Grabic R., Machova J., Randak T. Modulation of antioxidant defence system in brain of rainbow trout (Oncorhynchus mykiss) after chronic carbamazepine treatment. Comp. Biochem. Physiol. 2010. Vol. 151C, Is. 1. P. 137–141. doi: 10.1016/j.cbpc.2009.09.006

Lushchak V. I., Matviishyn T. M., Husak V. V. Pesticide toxicity: a mechanistic approach. EXCLI J. 2008. Vol. 17. P. 1101–1136. doi: 10.17179/excli2018-1710

McAvoy T., Nairn A. C. Serine/threonine protein phosphatase assays. Protoc. Mol. Biol. 2010. Vol. 18. P. 8. doi:10.1002/0471142727.mb1818s92

Moscone D., Arduini F., Amine A. A rapid enzymatic method for aflatoxin B detection. Methods Mol. Biol. 2011. Vol. 739. P. 217–235.

Pesticide use by country [Electronic resource] / link: https://www.worldometers.info/food-agriculture/pesticides-by-country/ (дата звернення: 10.11.2020).

Pomatto V., Palermo F., Mosconi G., et al. Xenoestrogens elicit a modulation of endocannabinoid system and estrogen receptors in 4NP treated goldfish, Carassius auratus. Gen. Comp. Endocrinol. 2011. Vol. 174, Is. 1. P. 30–35.

Senger M. R., Seibt K. J., Ghisleni G. C., Dias R. D., Bogo M. R., Bonan C. D. Aluminum exposure alters behavioral parameters and increases acetylcholinesterase activity in zebrafish (Danio rerio) brain. Cell. Biol. Toxicol. 2011. Vol. 27, Is. 3. P. 199–205.

Shabestarian H., Homayouni-Tabrizi M., Soltani M., Namvar F., Azizi S., Mohamad R. Green synthesis of gold nanoparticles using sumac aqueous extract and their antioxidant activity. Materials Research. 2017. Vol. 20, Is. 1. P. 264–270. doi: 10.1590/1980-5373-MR-2015-0694

Sharma S., Singh P., Chadha P., Saini H. S. Toxicity assessment of chlorpyrifos on different organs of rat: exploitation of microbial-based enzymatic system for neutralization. Environ. Sci. Pollut. Res. 2019. Vol. 26. P. 29649–29659. https://doi.org/10.1007/s11356-019-06140-8

Toni C., Menezes C. C., Loro V. L., Clasen B. E., Cattaneo R., Santi A., Pretto A., Zanella R., Leitemperger J. Oxidative stress biomarkers in Cyprinus carpio exposed to commercial herbicide bispyribac-sodium. J. Appl. Toxicol. 2010. Vol. 30, Is. 6. P. 590–595.

Uqab B., Mudasir S., Nazir R. Review on bioremediation of pesticides. J. Bioremed. Biodeg. 2016. Vol. 7, № 3. P. 343–348. doi:10.4172/2155-6199.1000343.

Viarengo A., Burlando B., Cavaletto M., Marchi B., Ponzano E., Blasco J. Role of metallothionein against oxidative stress in the mussel Mytilus galloprovincialis. Am. J. Physiol. 1999. Vol. 277, Is. 6 Pt 2. P. R1612–9. DOI: 10.1152/ajpregu.1999.277.6.R1612

Wilkinson C. F., Christoph G. R., Julien E., Kelley J. M., Kronenberg J., McCarthye J., Reissa R. Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: how to cumulate? Regul. Toxicol. Pharmacol. 2000. Vol. 31. P. 30–43.

World Health Organization [Electronic resource] / link: https://www.who.int/

Horyn O. I., Falfushynska H. I. Ekstrakt momordiky pryhnichuie okysnyi stres ta zbilshuie hemolitychnu stiikist erytrotsytiv koropa za vplyvu hliukozy. Nauk. zap. Ternop. nats. ped. un-tu. Ser. Biol. 2019. № 1, T. 75. S. 21–28. [in Ukrainian]

Kravtsova O. V. Fitoplankton riznotypnykh vodoim pryrodookhoronnykh i urbanizovanykh terytorii : avtoreferat dys. na zdobuttia nauk. stupenia kand. biol. nauk : 03.00.17. Kyiv, 2019. 20 s. [in Ukrainian]

Malakhov Yu. P. Novye dannye o raznoobrazyy vodoroslei Ryvnenskoho pryrodnoho zapovednyka. Alholohyia. 2014. T.24, № 3. S. 399-40. [in Russian]




DOI: https://doi.org/10.25128/2078-2357.20.3-4.8

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 O. I. Bodnar, S. V. Senko, I. O. Osypenko, I. Khatib, N. M. Kasyanchuk, H. I. Falfushynska

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.