L. R. Hrytsak, N. M. Drobyk


Peculiarities of adaptive strategies of rare species of Gentiana lutea L., Gentiana punctata L., Gentiana acaulis L., which allow them to survive in the highlands of the Ukrainian Carpathians, are analyzed. The ability of these species to survive in the highlands is determined not by their individual adaptive properties, but by the integrated interaction of morphological, anatomical, physiological, biorhythmological, reproductive and other features, which increase the adaptability of plants to specific habitats and shape their individual survival strategies.
The findings show that the formation of semi-rosette structures in plant species of G. lutea, G. punctata, and G. acaulis is a morphological property that allows them to exist in specific conditions of the highlands, where the surface layer of air is heated better. A number of passive and active mechanisms of protection of generative organs are revealed.
The upper leaves of monocarpic shoots of G. lutea and G. punctata together with the membranous cups create a kind of "micro-greenhouse" that protects the ovary from temperature changes. Both species are characterized by alternation of flowers in the inflorescence, which reduces the risk of damage in case of sudden frosts and belongs to the group of active adaptations that provide a favorable temperature for the development of generative organs of plants.
The corolla of G. punctata plants is densely covered with dark spots, and in G. acaulis plants it has a bluish color with olive-green spots. This is a sign of high content of anthocyanins, the biosynthesis of which is enhanced at low temperatures and increase the background of UV radiation and partially compensates for the lack of thermal energy in plants and protects them from short-wave radiation.
There is a correlation between the size of the corolla in plants and the hypsometric level of growth of species: increase in altitude above the sea level leads to size increase too. All species are characterized by a break in flowering and high life expectancy, which allows plants to restore the supply of nutrients necessary to ensure the processes of life, including seed production during a short-term vegetation period. These species are also characterized by miniaturization of morphometric parameters, which is a manifestation not only of interspecific features, but is also typical of the given species due to the localization of its populations at different hypsometric levels. The study demonstrated that differences in living conditions also affected the duration of functioning of rosette leaves. In species with lower hypsometric growth levels (G. lutea and G. punctata) only immature plants belong to the group of evergreen plants, and in the alpine species of G. acaulis - plants of all stages of ontogenesis. This allows plants to carry out photosynthesis immediately after the snow melts. The research findings reveal that the growing conditions also affected the morphology and anatomy of underground organs, which in G. lutea and G. punctata are represented by perennial additional storage roots with strong parenchymal secondary wood and interxylary phloem. In G. acaulis, the root system is represented by thin additional roots, which are characterized by moderate parenchymatization of the secondary phloem and xylem. Accordingly, it affects the storage of nutrients, the depot of which in G. lutea and G. punctata has a root system, and in G. acaulis - a rosette of leaves. The peculiarity of these species is the absence of root hairs, which is compensated by the development of arbuscular mycorrhiza, which is the result of symbiosis with glomus fungi (Glomeromycota).


G. lutea; G. punctata; G. acaulis; adaptation strategies; morphology; physiology; anatomy


Andreev I.O., Bublyk O.M., Mosula M.Z., Spiridonova K.V., Drobyk N.M., Kunakh V.A. Impact of habitat fragmentation on genetic diversity of plants in two rare species of the ukrainian flora Gentiana lutea L. and Iris pumila L. Factors in experimental evolution of organisms. 2015. Vol. 17. P. 284-288. [in Russian]

Astamirova M.A.-M., Umarov M.U., Taisumov M.A. Anatomical and physiological adaptations of cryophilic plants of central and eastern main Caucasus ridge. Vestnik KrasGAU. 2016. № 11. S. 114–122. [in Russian]

Bedey M. I., Krys' O. P., Voloshchuk M. I., Makhanets' I. A. Tyrlych zhovtyy (Gentiana lutea L.) v Ukrayins'kykh Karpatakh. Uzhhorod : PP «Povch R.M», 2010. 132 s. [in Ukrainian]

Borysova N. A. Formyrovanye morfolohycheskoy struktury horechavky zheltoy – Gentiana lutea L. Voprosy farmakohnozyy. 1960. T. 12. S. 311–317. [in Russian]

Vyshnevskyi V. I., Shevchuk S. A. The use of remote sensing metods for determination of the thermal characteristics of the Ukraunian Carpathians. Ukrai'ns'kyj zhurnal dystancijnogo zonduvannja Zemli. 2017. T. 12. S. 47–52. [in Ukrainian]

Volkov I. V. Vvedenie v jekologiju vysokogornyh rastenij: uchebnoe posobie. Tomsk : Iz-vo TGPU, 2006. 416 s. [in Russian]

Kyyak V. H. Variability of the ontogeny of individuals in populations of the rare plant species from high mountain zone of the Ukrainian Carpathians. Naukovi osnovy zberezhennja biotychnoi' riznomanitnosti. 2012. Vol. 3(10), № 1. S. 77–92. [in Ukrainian]

Kyyak V., Shtupun V., Bilonoha V. Сlimatic threats to population of rare and endemic plants in upper part of theUkrainian Carpathians. Visnyk of the Lviv University. Series Biology. 2016. Iss. 74. P. 104–115. [in Ukrainian]

Kyyak V. H., Bilonoha V. M. Current structural changes in plant populations in the upper part of the Ukrainian Carpathians. Naukovi zapysky derzhavnogo pryrodoznavchogo muzeju. 2016. Vol. 32. S. 39–48. [in Ukrainian]

Klymyshyn O. Optimization, protection and rational using of the Ukrainian Carpathians highlands vegetation and high boundary of the forest. Visnyk of the Lviv University. Biology series. 2010. Iss. 54. P. 27-40. [in Ukrainian]

Kushynska M. Insect Pollinators of Gentian of the genera Gentiana L. in highlands of Ukrainian Carpathians. Visnyk of the Lviv University. Biology series. 2009. Iss. 51. S. 102–109. [in Ukrainian]

Lavrenov N. G., Zernov A. S., Kipkeev A. M., Tekeev D. K., Semenova R. B., Akhmetzhanova A. A., Perevedentseva L. G., Sudzilovskaya N. A., Korneecheva M. Yu., Onipchenko V. G. Plant mycorrhiza under extreme conditions: Alpine snowbeds in Armenia. Zhurnal obshhej byologyy. 2017. Vol. 78, № 4. P. 80–85. [in Russian]

Likhanov A., Penteliuk O., Grigoryuk I., Kostenko S. Spatial specificity taking phenols are in leaves of horse chestnut plants (Aesculus hippocastanum L.). Biologigical Resources and Nature Management. 2016. Vol. 8, №3–4. P. 5–13. [in Ukrainian)

Mykitchak T., Reshetylo O., Tsaryk J. The consortive structure of Gentiana asclepiadea L. and Gentiana acaulis L. in Chornohora massif (Ukrainian Carpathians). Visnyk of the Lviv University. Biology series. 2009. Iss. 50. S. 35–43. [in Ukrainian]

Moskalyuk B. Introduction of Gentiana lutea L. in Ukrainian Carpathians. Introdukcija roslyn. 2013. № 1. S. 22–26. [in Ukrainian]

Moskalyuk B. I., Komendar V. I. Gentiana L. high-mountainous species in Ukrainian Carpathians and scientific foundations of their protection. Sci. Bull. Uzhgorod Univ. (Ser. Biol.). 2008. Vol. 24. S. 234–243. [in Ukrainian]

Nesteruk Yu. Roslynnyy svit Ukrayins'kykh Karpat: Chornohora. Ekolohichni mandrivky. L'viv, 2003. 345 s. [in Ukrainian]

Prokopiv А. І. Structural organization of shoot system of Gentiana L. Modern Phytomorphology. 2012. Vol. 1 P. 149. [in Ukrainian]

Strashnyuk N. M., Hrytsak L. R., Les'kova O. M. Vykorystannya biotekhnolohichnykh metodiv dlya zberezhennya Gentiana acaulis L. v Ukrayins'kykh Karpatakh. Naukovyy visnyk Chernivets'koho universytetu : zbirnyk nauk. prats'. Vyp. 145: Biolohiya, 2002. S. 154–159. [in Ukrainian]

Chervona knyha Ukrayiny. Roslynnyy svit / za red. Ya. P. Didukha. Kyyiv : Hlobalkonsaltynh,, 2009. 900 s. [in Ukrainian]

Chopyk V. I. Vysokohirna flora Ukrayins'kykh Karpat. Kyyiv: Naukova dumka, 1976. 269 s. [in Ukrainian]

Borman J., Szilagyi A., Hideg E. Role of plant phenolics in UV-protection. 29 Annual Meeting of the American Society of Photobiology. Chicago, 2004. Abstracts.

Boston R. S., Vittanen P. V., Vierling E. Molecular chaperones and protein folding in plants. Plant Molecular Biology. 1996. Vol. 32 (1–2). C. 191–222. doi: 10.1007 / BF00039383.

Brundrett M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009. Vol. 320, № 1–2. P. 37–77.

Catorci A., Piermarteri K., Tardella F. M. Pedo-climatic and land use preferences of Gentiana lutea subsp. lutea in central Italy. Plant Ecology and Evolution. 2014. Vol. 147, № 2. Р. 176–186. doi: 10.5091/plecevo.2014.962.

Chandler J. The hormonal regulation of flower development. Journal of Plant Growth Regulation. 2011. Vol. 30. P. 242–254.

Cuena-Lombraña A., Mauro F., Fenu G., Cogoni D., Bacchetta G. The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area. International Journal of Biometeorology. 2018. Vol. 62, № 7. Р. 1283–1295. doi: 10.1007/s00484-018-1533-3

Duan Y., He Ya., Liu J. Reproductive ecology of the Qinghai-Tibet Plateau endemic Gentiana straminea (Gentianaceae), a hermaphrodite perennial characterized by herkogamy and dichogamy. Acta Oecologica. 2005. Vol. 27. P. 225–232. doi:10.1016/j.actao.2005.01.003.

Hautier Y., Randin C. F., Stöcklin, J., Guisan, A. Changes in reproductive investment with altitude in an alpine plant. Journal of Plant Ecology. 2009. Vol. 2, No 3. P. 125–134. doi: 10.1093/jpe/rtp011.

He J. Dong T., Huang K., Yang Y., Li D., Xu X., He X. Sex specific floral morphology, biomass, and phytohormones associated with altitude in dioecious Populus cathayana populations. Ecology and Evolution. 2017. Vol. 7, Iss. 11. Р. 3976–3986. doi: 10.1002/ece3.2808.

Kolaříková Z. The Role of Arbuscular Mycorrhiza in the Growth and Development of Plants in the Family Gentianaceae: The Gentianaceae. Vol. 1: Characterization and Ecology. Berlin Heidelberg : Springer-Verlag, 2014. P. 303–316.

Körner C. Concepts in empirical plant ecology. Grubb Review. Journal Plant Ecology & Diversity. 2018. Vol. 11, Iss. 4. P. 405-428. doi: 10.1080/17550874.2018.1540021.

Körner Ch. Alpine plant life: functional plant ecology of high moun. Heidelberg : Springer, Science & Business, 2003. 298 p. doi: 10.1007/978-3-642-18970-8.

Nagano Y., Abe K., Kitazawa T. et al. Changes in pollinator fauna affect altitudinal variation of floral size in a bumblebee-pollinated herb. Ecology and Evolution. 2014. Vol. 4 (17). P. 3395–3407. doi: 10.1002/ece3.1191.

Samarakoon U. C., Funnell K. A., Woolley D. J., Ambrose B. A., Morgan E. R. Anatomical investigations determining the origin of crown buds on the transition zone of gentians. New Zealand journal of botany. 2013. Vol. 51, № 4. Р. 264–274. doi: 10.21273/JASHS.139.1.13.

Scippa G. S., Trupiano D., Rocco M., Di Iorio A., Chiatante D. Unravelling the response of poplar (Populus nigra) roots to mechanical stress imposed by bending. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. 2008. Vol. 142. Iss. 2. P. 401-413. doi: 10.1080/11263500802151058

Wang B., Qiu Y.-L., 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. V. 16. № 5. P. 299–363. doi: 10.1007/s00572-005-0033-6.



  • There are currently no refbacks.

Copyright (c) 2020 L. R. Hrytsak, N. M. Drobyk

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.