THE INFLUENCE OF L-ARGININE ON THE LEVEL OF SYNTHESIS OF NITRIC OXIDE AND THE CONTENT OF GLIAL FIBRILLARY ACIDIC PROTEIN IN BRAIN DURING EXPERIMENTAL ANTIPHOSPHOLIPID SYNDROME

O. Z. Yaremchuk, K. A. Posokhova, O. S. Tokarskyi

Abstract


The study aims to investigate the infuence of L-arginine on the content of nitrite anions (NO2¯) and nitrate anions (NO3¯) and the content of glial fibrillary acidic protein (GFAP) in the cerebellum and cerebral hemispheres of BALB/c mice with antiphospholipid syndrome.
The studies were performed on 30 female BALB/c mice. The experimental animals were divided into 3 groups: 1 – control (intact) animals; 2 – animals with experimental antiphospholipid syndrome (APS), 3 – animals with APS, which were injected with L-arginine at a dose of 25 mg/kg, intraperitoneally once a day, for 10 consecutive days after the development of APS.
The increase in glial fibrillary acidic protein and stable metabolites of nitric oxide NO2¯ and NO3¯ in the cerebellum and cerebral hemispheres, relative to the control, was observed in APS-developed BALB/c mice. In case of injection of the precursor of NO synthesis, L-arginine, animals with APS were found to have a further significant increase in the content of NO2¯ and NO3¯ in the cerebellum and the cerebral hemispheres. The introduction of L-arginine did not cause significant changes in GFAP (total) in cerebral hemispheres. However, GFAP content (49-37 kDa) was decreasing. The cerebellum showed an increase in GFAP (total) and GFAP (49-37 kDa) content, compared to the performance of animals with APS.
Therefore, the increase in the content of GFAP in the cerebellum and the cerebral hemispheres of BALB/c mice under APS indicates the development of reactive astrogliosis. The introduction of the precursor of NO synthesis, L-arginine, is accompanied by an increase in the content of stable metabolites of nitric oxide (NO2¯, NO3¯) and GFAP in the cerebellum of BALB/c mice, which can indirectly confirm the role of NO in regulating of GFAP expression in astrocytes under APS.

Keywords


antiphospholipid syndrome; nitric oxide; glial fibrillary acidic protein (GFAP); cerebellum; cerebral hemispheres; L-arginine

References


Gemodinamika mozga: glutamatergicheskaia sistema i tsikl oksida azota v reguliatsii mozgovogo krovoobrashcheniia. Novaia kontseptsiia / V. P. Reutov i dr. Pacific Medical Journal. 2017. №. 3. P. 37–45 (in Russian).

Kiselyk I. O., Lutsyk M. D., Shevchenko L. Yu. Osoblyvosti vyznachennia nitrativ ta nitrytiv u krovi khvorykh na virusni hepatyty ta zhovtianytsi inshoi etiolohii. Lab. diahnostyka. 2001. № 3. С. 43–45 (in Ukrainian).

Krasnov V. Astrotsitarnye belki golovnogo mozga: struktura, funktsii, klinicheskoe znachenie. Nevrologicheskiy zhurnal. 2012. № 1. С. 37–42 (in Russian).

Kurovs'ka V. O., Pishak V. P., Tkachuk S. S. Rol' oksydu azotu v ishemichnykh i ishemichnoreperfuziynykh ushkodzhenniakh holovnoho mozku. Bukovyns'k. med. visn. 2008. Т. 12, № 4. С. 143–149 (in Ukrainian).

Maksimovich N. E. Poniatie o nitroksidergicheskoy sisteme mozga (rol' neyronal'nykh istochnikov). Zhurnal GGMU. 2003. Vol. 4. P. 7–10 (in Russian).

Morfolohichnyy stan matky ta platsenty pry eksperymental'nomu modeliuvanni hestatsiynoho antyfosfolipidnoho syndromu na myshakh / Zaychenko H. V. ta in. Ukrains'kyy medychnyy al'manakh. 2011. Т. 14, № 4. С. 136–141 (in Ukrainian).

Nasonov E. L. Antifosfolipidnyy sindrom. Moskva: Litterra, 2004. 440 с (in Russian).

Posokhova K. A., Sampara S. R., Sak I. Yu. Vplyv tivortinu na perebih vahitnosti, stan plodiv ta novonarodzhenykh pry eksperymental'nomu antyfosfolipidnomu syndromi. Medychna khimiia. 2013. Т. 15, № 4. С. 26–29 (in Ukrainian).

Problema oksida azota v nevrologii / Malakhov V. A. i dr. Sumy, 2009. 242 с (in Russian).

Tykhomyrov A. O., Pavlova O. S., Nedzvets'kyy V. S. Hlial'nyy fibryliarnyy kyslyy protein (HFKP): do 45-richchia vidkryttia. Neurophysiology. 2016. Vol. 48, № 1. С. 58–75 (in Ukrainian).

Ul'ianova O. V., Kutashov V. A., Khabarova T. Iu. Osobennosti nevrologicheskikh proiavleniy u patsientov s antifosfolipidnym sindromom. Vestnik KazNMU. 2016. № 2. С. 333–338 (in Russian).

Arachchillage D. R. J., Laffan M. Pathogenesis and management of antiphospholipid syndrome. British Journal of Haematology. 2017. Vol. 178. P. 181–195.

Clinical Relevance of Nitric Oxide Metabolites and Nitrative Stress in Thrombotic Primary Antiphospholipid Syndrome / PRJ Ames et al. The Journal of Rheumatology. 2010. Vol. 37, № 12. Р. 2523–2530.

Giannakopoulos B, Krilis S. A. The pathogenesis of the antiphospholipid syndrome. The New England Journal of Medicine. 2013. Vol. 368. Р. 1033–1044.

Graf J. Central Nervous System Manifestations of Antiphospholipid Syndrome. Rheum Dis Clin North Am. 2017. Vol. 43, № 4. P. 547–560. doi: 10.1016/j.rdc.2017.06.004.

Green L. C., Davie A. W., Golawski J. Analisis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. biochem. 1982. Vol. 126, № 1. Р. 131–138.

Laemmli U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970. Vol. 227. Р. 680–685.

Mechanisms of Endothelial Dysfunction in Antiphospholipid Syndrome: Association With Clinical Manifestations / M. Velasquez et al. Front. Physiol. 2018. Vol. 21, №. 9. Р. 1840. doi: 10.3389/fphys.2018.01840 (2018).

Neurological manifestations in patients with antiphospholipid syndrome / M. Etemadifar et al. Ir J neurol. 2013. Vol. 12, № 4. P. 172–175.

Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 1979. Vol. 76, № 9. Р. 4350–4354.




DOI: https://doi.org/10.25128/2078-2357.19.3.5

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 O. Z. Yaremchuk, K. A. Posokhova, O. S. Tokarskyi O. S. Tokarskyi O. S. Tokarskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.