FATTY ACID COMPOSITION OF GOOSE MYOCARDIUM AFFECTED BY VICASOL

O. V. Yakoviichuk, O. O. Danchenko, M. M. Danchenko, A. S. Fedorko, I. O. Kulyk

Abstract


In science vicasol is known to be relative to the energy and antioxidant systems of tissues closely related to the biosynthesis and oxidation of fatty acids. This effect may cause changes in the fatty acid composition of tissues, and numerous works on the positive effect of quinones and their derivatives on the myocardial function, suggest that the proper dose and feeding can increase the stability and productivity of poultry. The given was aims to study the effect of vicasol on the fatty acid composition of goose myocardium.
Myocardium was chosen as a biological object. Biological material was collected every 7 days throughout the period from the 21st to the 35th day of ontogeny, characterized by the state of physiological tension of geese. Feeding of geese with vicasol at a dose of 0.7 mg / kg body weight began with the 3rd day of ontogeny. Fatty acid analysis in myocardial tissues was performed by gas-liquid chromatography, pre-fabric samples were processed with the method by Palmer (1971) to obtain tissue lipid extracts.
According to the results of the study, due to various changes in the content of the entire spectrum of fatty acids of the tissue during the experiment - the use of vicasol causes a slight increase in the unsaturation and the total content of unsaturated fatty acids in the myocardium of geese. These fluctuations are realized depending on the physiological state of the body. where vicasol can stimulate both the biosynthesis processes of individual fatty acids and their mitochondrial and microsomal oxidation, as evidenced by multidirectional reliable changes in the content of their entire spectrum. In particular, on the 21st day, the content of docosopentaenoic acid increased by 36.3% whereas the content of docosohexaenoic and linolenic acids decreased by an average of 21–24%, on the 28th day the content of eicosatetraic and docosahexaenoic acids increased whereas the content of the linoleic acids dropped by 22.6% in control groups. On the 35th day, the content of basic unsaturated fatty acids: palmitooleic, linoleic, linolenic and docosohexaenoic acids increased in the tissue under the influence of vicasol with complete depletion of docosopentaenoic acid. These fluctuations in fatty acid composition cause a slight increase in the total content of unsaturated fatty acids and increase the unsaturation of myocardial lipids on the 28th and 35th days of ontogeny of geese. Based on previous results regarding the antioxidant state of myocardium affected by vicasol and the given findings, which prove changes in the content of the entire spectrum of fatty acids during the selected ontogeny, vicasol can be used in poultry farming as a tool to improve the quality and the resilience of poultry.

Keywords


vicasol; fatty acids; geese

References


Aoganghua A., Nishiumi S., Kobayashi K., Nishida M., Kuramochi K., Tsubaki K., Hirai M., Tanaka S., Azuma T., Yoshida H., Mizushina Y., Yoshida M. Inhibitory effects of vitamin K₃ derivatives on DNA polymerase and inflammatory activity. International Journal of Molecular Medicine. 2011. Vol. 28, № 6. P. 937–945. doi: 10.3892/ijmm.2011.773.

Arnold W., Giroud S., Valencak T. G., Ruf T. Ecophysiology of Omega Fatty Acids: A Lid for Every Jar. Physiology. 2015. № 30. P. 232–240. doi: 10.1152/physiol.00047.2014.

Baran I., Ionescu D., Filippi A., Mocanu M. M., Iftime A., Babes R. Tofolean I. T., Irimia R., Goicea A., Popescu V., Dimancea A., Neagu A., Ganea C. Novel insights into the antiproliferative effects and synergism of quercetin and menadione in human leukemia Jurkat T cells. Leukemia Research. 2014. Vol. 38, № 7. Р. 836–849. doi: 10.1016/j.leukres.2014.04.010.

Bolton J. L., Dunlap T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem Res Toxicol. 2017. Vol. 30, № 1. P. 13–37. doi: 10.1021/acs.chemrestox.6b00256.

Carter W. A., Whiteman J. P., Cooper-Mullin C., Newsome S. D., McWilliams S. R. Physiol Biochem Zool. 2019. Vol. 92, № 2. P. 239–251. doi: 10.1086/702667.

Cherian G. Nutrition and metabolism in poultry: role of lipids in early diet. Journal of Animal Science and Biotechnology. 2015. Vol. 6, № 1. P. 28. doi: 10.1186/s40104-015-0029-9.

Guglielmo C. G. Move that fatty acid: fuel selection and transport in migratory birds and bats. Integr Comp Biol. 2010. № 50. P. 336–45.

Hassan G. S. Menadione. Profiles Drug Subst Excip Relat Methodol. 2013. № 38. P. 227–313. doi: 10.1016/B978-0-12-407691-4.00006-X.

Huber G. A., Priest S. M., Geisbuhler T. P. Cardioprotective Effect of Hydroxysafflor Yellow A via the Cardiac Permeability Transition Pore. Planta Med. 2018. Vol. 84, № 8. P. 507–518. doi: 10.1055/s-0043-122501.

Hulbert J. Metabolism and longevity: is there a role for membrane fatty acids? Integr Comp Biol. 2010. № 50. P. 808–817.

Jan Y. H., Richardson J. R., Baker A. A., Mishin V., Heck D. E., Laskin D. L., Laskin J. D. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication. Toxicology and Applied Pharmacology. 2015. Vol. 288, №1. P. 114–120. doi: 10.1016/j.taap.2015.07.023.

Khyzhnyak S. V., Midyk S. V., Sysoliatin S. V., Voitsitsky V. М. Fatty acids composition of inner mitochondrial membrane of rat cardiomyocytes and hepatocytes during hypoxia-hypercapnia. Ukr.Biochem.J. 2016. Vol. 88, № 3. P. 92–98. doi: https://doi.org/10.15407/ubj88.03.092.

Kim E. H., Kim M. K., Yun H. Y., Baek K. J., Kwon N. S., Park K. C., Kim D. S. Menadione (Vitamin K3) decreases melanin synthesis through ERK activation in Mel-Ab cells. Eur J Pharmacol. 2013. Vol. 718, № 1–3. P. 299–304. doi: 10.1016/j.ejphar.2013.08.018.

Klaiman J. M., Price E. R., Guglielmo C. G. Fatty acid composition of pectoralis muscle membrane, intramuscular fat stores and adipose tissue of migrant and wintering white-throated sparrows (Zonotrichia albicollis). J Exp Biol. 2009. № 212. P. 3865–3872. doi: 10.1242/jeb.034967.

Liang S., Ping Z., Ge J. Coenzyme Q10 Regulates Antioxidative Stress and Autophagy in Acute Myocardial Ischemia-Reperfusion Injury. Oxid Med Cell Longev. 2017. № 2017. P. 9863181. doi: 10.1155/2017/9863181.

Ma Q. Role of nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology. 2013. № 53. P. 401–426. doi: 10.1146/annurev-pharmtox-011112-140320.

Marchionatti A. M., Pacciaroni A., Tolosa de Talamoni N. G. Effects of quercetin and menadione on intestinal calcium absorption and the underlying mechanisms. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology. 2013. Vol. 164, № 1. P. 215–220. doi: 10.1016/j.cbpa.2012.09.007.

Marry R., Grenner D., Mayes P., Rodwell V. Biochemistry of Humans [Russian translation], Vol. 2, Mir, Moscow (1993).

McCue M. D., O. Amitai, I. Khozin-Goldberg, S. R. McWilliams, and B. Pinshow. Effect of dietary fatty acid composition on fatty acid profiles of polar and neutral lipid tissue fractions in zebra finches, Taeniopygia guttata. Comp Biochem Physiol A Mol Integr Physiol. 2009. № 154. P. 165–172. doi: 10.1016/j.cbpa.2009.06.002.

Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ et al. «International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors». Pharmacological Reviews. 2006. Vol. 58, № 4. P. 726–741. doi: 10.1124/pr.58.4.5.

Molinari C., Morsanuto V., Polli S., Uberti F. Cooperative Effects of Q10, Vitamin D3, and L-Arginine on Cardiac and Endothelial Cells. J Vasc Res. 2018. Vol. 55, № 1. P. 47–60. doi: 10.1159/000484928.

Moskalenko N. I., Komarovska-Porohniavets O. Z., Iskiv O. P., Stadnytska N. E. Biological and pharmacological aspects of quinones. Bulletin of Lviv Polytechnic National University. Chemistry, technology of substances and their application. 2008. № 609. P. 124–130.

Nakamura M. T., Nara T. Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annual Review of Nutrition. 2004. № 24. P. 345–376. doi: 10.1146/annurev.nutr.24.121803.063211.

Oh S. J., Han H. K., Kang K. W., Lee Y. J., Lee M. Y. Menadione serves as a substrate for P-glycoprotein: implication in chemosensitizing activity. Arch Pharm Res. 2013. Vol. 36, № 4. P. 509–516. doi: 10.1007/s12272-013-0052-3.

Palmer F. B. S-C. The extraction of acidic phosphollpids in organic solvent mixtures containing water. Biochim. Biophys Acta. 1971. № 231. P. 134–144. doi: 10.1016/0005-2760(71)90261-x.

Salem N. Jr., Litman B., Kim H. Y., Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001. Vol. 36, № 9. P. 945–959. doi: 10.1007/s11745-001-0805-6.

Shimozuru M.,. Kamine A., Tsubota T. Changes in expression of hepatic genes involved in energy metabolism during hibernation in captive, adult, female Japanese black bears (Ursus thibetanus japonicus). Comp Biochem Physiol Part B Biochem Mol Biol. 2012. № 163. P. 254–261. doi: 10.1016/j.cbpb.2012.06.007.

Skrip M. M., McWilliams S. R. Oxidative balance in birds: An atoms-to-organisms-to ecology primer for ornithologists. J F Ornithol. 2016. № 87. P. 1–20. doi: https://doi.org/10.1111/jofo.12135.

Teale M. C. Omega 3 Fatty Acid Research / Teale. – New York: Nova Science Pub Inc., 2006. – 301 с.

Titov V. N. Oleic fatty acid, Oleic, linoleic, linolenic low-density lipoproteins. Klin lab diagn. 2006. № 6. P. 3–13.

Vukomanovic D., Rahman M. N., Bilokin Y., Golub A. G., Brien J. F., Szarek W. A., Jia Z., Nakatsu K. In vitro Activation of heme oxygenase-2 by menadione and its analogs. Med Gas Res. 2014. Vol. 4, № 1. P. 4. doi: 10.1186/2045-9912-4-4.18.

Wallis J. G., Watts J. L., Browse J. Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences. 2002. Vol. 27, № 9. P. 467. doi: https://doi.org/10.1016/S0968-0004(02)02168-0.

Wiraswati H. L., Hangen E., Sanz A. B., Lam N. V., Reinhardt C., Sauvat A., Mogha A., Ortiz A., Kroemer G., Modjtahedi N. Apoptosis inducing factor (AIF) mediates lethal redox stress induced by menadione. Oncotarget. 2016. Vol. 7, № 47. Р. 76496–76507. doi: 10.18632/oncotarget. 12562.

Xu J., Tang S., Yin B., Sun J., Song E., Bao E. Co-enzyme Q10 and acetyl salicylic acid enhance Hsp70 expression in primary chicken myocardial cells to protect the cells during heat stress. Mol Cell Biochem. 2017. № 435 (1– 2). 73–86. doi: 10.1007/s11010-017-3058-1.

Yakoviichuk O. V., Ruban H. V., Danchenko O. O. Influence of vicasol on the activity of Krebs cycle enzymes, antioxidant system and peroxide oxidation in the muscles of geese. Animal Husbandry Products Production and Processing. 2017. Vol. 134, № 1-2. P. 105–112.

Yakoviichuk O. V, Danchenko О. О, Danchenko М. М, Fedorko A. S, Haponenko Т. M. Influence of vicasol on oxidative reducing processes of myocardium geese. Issues of bioindication and ecology. 2019. 24 (1). С. 133–144. doi: https://doi.org/10.26661/2312-2056/2019-24/1-11.

Zdorovtseva L. M, Khromishev V. O, Danchenko O. O. Geese fatty acid composition of brain and heart lipids in hypo-and hyperoxia. Ukrainian Journal of Ecology. 2012; 2 (3): 9–18. doi: dx.doi.org/10.15421/20122_30.




DOI: https://doi.org/10.25128/2078-2357.19.3.4

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 O. V. Yakoviichuk O. V. Yakoviichuk O. V. Yakoviichuk, O. O. Danchenko O. O. Danchenko O. O. Danchenko, M. M. Danchenko M. M. Danchenko M. M. Danchenko, A. S. Fedorko A. S. Fedorko A. S. Fedorko, I. O. Kulyk I. O. Kulyk I. O. Kulyk

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.