LIPID METABOLISM IN THE BODY OF FISH UNDER THE ACTION OF THE ENVIRONMENTAL AQUATIC FACTORS

V. O. Khomenchuk, B. Z. Lyavrin, О. O. Rabchenyuk, V. Z. Kurant

Abstract


Lipids are a heterogeneous group of chemical compounds that are found in all animal and plant organisms and combine based on common properties. The physiological role of lipids in fish is extremely important and diverse. They perform a number of functions, including energetical, structural, regulatory and others.
The authors analyzed the data in the domestic and foreign literature on the structural and functional importance of lipids in fish. The role of lipids in the processes of adaptation of aquatic organisms to adverse factors of the aquatic environment (temperature, salinity, chemical pollution) by changing the ratio of certain classes of lipids, their fatty acid composition and spatial orientation of fatty acid "tails" in biological membranes. The regulatory role of lipids in the functioning of membrane enzymes is analyzed.
The authors argue that to find the causes of reduced productivity of fish in a polluted aquatic environment, it is necessary to study bodily changes in lipid metabolism, which are one of the main structural and metabolic compounds, responsible for the formation of adaptive reactions.
By adaptation to low temperatures the inclusion of polyene fatty acids in the membrane lipids increases and also increases desaturation. Caused by changes in the temperature of the adjustment in the composition of membrane lipids are aimed at maintaining the mobility of membranes. By adaptation to the temperature factor the level of saturated or unsaturated fatty acids, the ratio of the main classes of phospholipids and cholesterol, asymmetry in the distribution of proteins and lipids in the cell membrane may change.
The effects of hydrostatic pressure and salinity of water on lipid metabolism in fish are analyzed. It has been established that phase transitions are largely determined by the same properties of membrane lipids as with temperature change. First of all, it is the degree of saturation of fatty acids, the length of their chain, the position of the double bond and the number of hydrocarbon atoms (pair or not pair). It is shown that in the organs and tissues or fish, involved in the processes of osmoregulation, during adaptation to salt water the lipid content increases.
Under the influence of toxic factors in different species of fish a general adaptation strategy is traced, which consists of increasing the content of those lipid fractions, that maintain the energy status of fish for excretion and neutralization of toxicants, reducing the permeability of biological cell membranes to limit the entry of toxicants into fish organism.

Keywords


lipids; metabolism; fish; adaptation; aquatic environment

References


Bergel'son L. D. O vozmozhnom uchastii lipidov v nakoplenii i usilenii biologicheskih signalov. Zhurn. jevoljuc. biohim. i fiziol. 1986. T. 22, № 4. S. 357–360. [in Russian]

Bogdan V. V. Vlijanie tjazhelyh metallov na lipidy molodi osetra. Jekologicheskaja fiziologija i biohimija ryb. 2000. T. 1. C. 29–30. [in Russian]

Bolgova O. M. Ripati P. O, Polina A. V. Zhirnye kisloty kur i ryb pri vkljuchenii v ih raciony kompleksov kobal'ta i nikelja. Sravnitel'naja biohimija vodnyh zhivotnyh. Petrozavodsk, 1983. S. 93–98. [in Russian]

Burlakova E. B. Vlijanie lipidov membran na fermentativnuju aktivnost'. Lipidy. Struktura, biosintez, prevrashhenija i funkcii. M. : Nauka, 1977. S. 16–27. [in Russian]

Vysockaja R. U. Ruokolajnen T. R. Jekologo-biohimicheskie aspekty izuchenija reakcii ryb na dejstvie toksicheskih veshhestv. Pervyj simp. ekol. biochem. ryb: tez. dokl., Jaroslavl', oktjabr', 1991 g. Jaroslavl', 1991. S. 43–45. [in Russian]

Gandzjura V. P. Ignatjuk A. A. Vlijanie ionov svinca i ammonija na bioproduktivnye parametry molodi ryb. Gidrobiol. zhurn. 1998. T. 34, № 1. S. 85–90. [in Russian]

Gennis R. Biomembrany: Molekuljarnaja struktura i funkcii. M. : Mir, 1997. 624 s. [in Russian]

Germanovich A. D. Chekaltana D. A., Pimenova T. V. Dinamika lipidnogo sostava tela molodi stal'nogolovogo lososja Salmo gairdneri Rich. pri adaptacii k solonovatoj vode. DAN SSSR. 1988. T. 30, № 3. S. 764–769. [in Russian]

Hrytsyniak I. I., Smolianinov K. B., Yanovych V. H. Obmin lipidiv u ryb: monohrafiia. Lviv : Triada plius, 2010. 336 s. [in Ukrainian]

Evtushenko N. Ju. Borisjuk A. B. Vlijanie rastvorennoj vodoj medi na biosinteticheskuju napravlennost' obmennyh procesov v pecheni karpa. Tr. v VINITI. 1986. T. 805. S. 11–16. [in Russian]

Evtushenko N. Ju. Intensivnost' lipidnogo obmena v pecheni karpa v zavisimosti ot koncentracii marganca v vode. Gidrobiol. zhurn. 1985. T. 21, № 6. S. 62–66. [in Russian]

Zhidenko A. O. Osobennosti metabolizma jenergeticheskih komponentov u zimujushhej molodi karpa i rol' adaptivnyh mehanizmov v ee vyzhivaemosti: аvtoref. dis… kand. biol. nauk: 03.00.04. K., 1990. 18 s. [in Russian]

Ipatova O. M. Fosfogliv: mehanizm dejstvija i primenenie v klinike. M. : GU NII biomedicinskoj himii RAMN, 2005. 318 s. [in Russian]

Kejts M. Tehnika lipidologii. Vydelenie analiz i identifikacija lipidov. M. : Mir, 1975. 322 c. [in Russian]

Klimov A. N., Nikul'cheva A. N. Obmen lipidov i lipoproteidov i ego narushenija. SPb. : Piter-kom., 1999. 512 c. [in Russian]

Kreps E. M. Lipidy kletochnyh membran. Jevoljucija lipidov mozga. Adaptacionnaja funkcija lipidov. SPb : Nauka, 1981. 339 c. [in Russian]

Levina Je. N. Obshhaja toksikologija metallov. Medgiz, Leningradskoe otdelenie, 1972. 183 c. [in Russian]

Murzina S. A. Rol' lipidov i ih zhirnokislotnyh komponentov v jekologo-biohimicheskih adaptacijah ryb severnyh morej: dis. na soisk. uch. step. doktora biologicheskih nauk. M. : 2019. 376 s. [in Russian]

Pavlov D. S., Nemova N. N., Kirillova E. A., Kirillov P. I., Nefedova Z. A., Murzina S. A. Soderzhanie lipidov u segoletkov nerki Oncorhynchus nerka v period nagul'noj migracii (r. Ozernaja, Kamchatka). Doklady RAN. 2012. T. 445, № 1. S. 114–117. [in Russian]

Rabcheniuk O. O. Vplyv pidvyshchenykh kontsentratsii Ferumu u vodi na metabolichni protsesy v orhanizmi koropa ta shchuky: avtoref. dys… kand. biol. nauk: 03.00.10 «Ikhtiolohiia». K., 2019. – 24 c. [in Ukrainian]

Romanenko V. D., Arsan O. M., Solomatina V. D. Mehanizmy temperaturnoj akklimacii ryb. K. : Naukova dumka, 1991. 192 c. [in Russian]

Senyk Yu. I., Khomenchuk V. O., Kurant V. Z., Hrubinko V. V. Rol fosfolipidiv ziaber ryb u formuvanni toksykorezystentnosti do dii yoniv kadmiiu. Hidrobiol. zhurn. 2016. T. 52, № 2. S. 83–90. [in Ukrainian]

Sidorov V. S. Jekologicheskaja biohimija ryb. Lipidy. L. : Nauka, 1983. 240 s. [in Russian]

Uajt A., Hendler F., Smit Je. i dr. Osnovy biohimii. M. : Mir, 1981. T. 2. S. 739–740. [in Russian]

Khomenchuk V. O., Rabcheniuk O. O., Senyk Yu. I., Holinei H. M., Kurant V. Z. Fosfolipidnyi sklad tkanyn koropa i shchuky za dii yoniv Fe3+. Hidrobiol. zhurn. 2020. T. 56, № 2. S. 59–69. [in Ukrainian]

Hochachka P., Somero Dzh. Biohimicheskaja adaptacija. M. : Mir, 1988. 568 s. [in Russian]

Shul'man G. E. Jakovleva K. K. Geksaenovaja kislota i estestvennaja podvizhnost' ryb. Zhurn. obshh. biol. 1983. T. 44, № 4 S. 529–540. [in Russian]

Aarsman A. J., van den Bosch H. Does de novo synthesis of lysophosphatidylcholine occur in rat lung microsome? Biochim. Biophys. Acta. 1980. Vol. 620, N 3. P. 410–417.

Amaguchi M. Role of zinc as an activator of mitochondrial function in rat liver. Biochem. Pharm. 1982. Vol. 31. №. 7. P. 1289 1293.

Arts M. T., Ackman R. G., Holub B. J. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 2001. Vol. 58. P. 122–137.

Baranska J. Influence of temperature on the composition of fatty acids and on lipogenesis in frog tissues. Comp. Biochem. Physiol. 1989. Vol. 28. № 2. P. 553 570.

Baxter A. A., Poon I. K., Hulett M. D. The lure of the lipids: how defensins exploit membrane phospholipids to induce cytolysis in target cells. Cell Death Dis. 2017. Vol. 8 (3). P. 2712 2713.

Belyaeva E. A., Glazunov V. V., Korotkov S. М. Cd2+-promoted mitochondrial permeability transition: a comparison with other heavy metals. Acta Biochim. Pol. 2004. Vol. 51. P. 545–551.

Berrigge M. J. Inositol Triphosphate and Diacylglycerol: Two Interacting Second Messengers. Ann. Rev. Biochem. 1987. Vol. 56. P. 159–193.

Bjerkeng B., Storebakken T., Wathne E. Cholesterol and short-chain fatty acids in diets for Atlantic salmon Salmo salar (L.): effects on growth, organ indices, macronutrient digestibility, and fatty acid composition. Aquacult. Nutr. 1999. Vol. 5. P. 181–191.

Brown D. A. Structure and function of sphingolipid and cholesterol rich membrane rafts. J. Biol. Chem. 2000. Vol. 275. P. 17221 17224.

Bulkin B. Lipids-protein interactions. Role of divelant ions in binding of glycyglycine to phosphatidye serine. Biochim. Biophys. Acta. 1985. Vol. 406, № 3. P. 415 425.

Eastman J. T. Lipid storage systems and the biology of two neutrally buoyant Antarctic Notothenioid fishes. Comp. Biochem. Physiol. 1988. Vol. 90B. P. 529–537.

Eichenberger E. The interrelation between essentiality and toxicity of metals in the aquatic ecosystem. Metal ions in biological systems: New-York and Basel. 1982. Vol. 20. P. 67–100.

Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim. Biophis. Acta. 1994. Vol. 1212. P. 26–42.

Farcas T. Adaptation of fatty acid composition to temperature. A study on carp (Cyprinus carpio L.) liver slices. Comp. Biochem. Physiol. 1984. Vol. 79B, № 4. P. 531 535.

Hazel J. R. Landrey-Scott R. Time course of thermal adaptation in plasma membranes of trout kidney. Am. J. Physiol. 1988. Vol. 255, № 4. P. 622 634.

Henderson R. J. Tocher D. R. The lipid composition and biochemistry of dreshwater fish. Prog. Lipid Res. 1997. Р. 281 347.

Henderson R. J., Sargent J. R., Hopkins C. E. Changes in the content and fatty acid composition of lipid in an isolated population of capelin Mallotus vilosus during sexual maturation and spawning. Mar. Biol. 1994. Vol. 78, № 3. P. 255 263.

Hla T., Dannenberg A. J. Sphingolipid signaling in metabolic disorders. Cell metabolism. 2012. Vol. 16. P. 420–434.

Hokin L. E. Hexum T. D. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase IX. On the role of phospholipids in the enzyme. Arch. Biochem. and Biophys. 1992. Vol. 151, № 2 P. 58–61.

Jaikishan S. J., Slotte P. Stabilization of sphingomyelin interactions by interfacial hydroxyls – A study of phytosphingomyelin properties. Biochim. Biophys. Acta: Biomembranes. 2013. Vol. 1828, Issue 2. P. 391–397.

Kagan V. E., Tyurin V. A., Gorbunov N. V., Prilipko L. L., Chelomin V. P. Are changes in the microviscosity and an asymmetrical distribution of phospholipids in the membrane necessary conditions for signal transmission. A comparison of the mechanisms of signal transmission in plasma membranes of brain synaptosomes and photoreceptor membranes of the retina. J. Evol. Biochem. Physiol. 1984. Vol. 20. P. 6–11.

Killian J. A. van Meer G. The "double life" of membrane lipids. EMBO Reports. 2001. Vol. 21 P. 91–95.

Kishimoto A. Y., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 1980. Vol. 255, N 6. P. 2273–2276.

Knoll W., Frank C. W., Heibel C. Functionalte the red lipid bilayers. J. Biotechnol. 2000. Vol. 74. P. 137 158.

Komori T. The effects of phosphatidylserine and omega-3 Fatty acid-containing supplement on late life depression. Ment. Illn. 2015. Vol. 7, N 1. P. 5647.

Kraffe E., Marty Y., Guderley H. Changes in mitochondrial oxidative capacity during thermal acclimation of rainbow trout: roles of membrane proteins, phospholipids and its fatty acide composition. J. Exp. Biol. 2007. Vol. 210. P. 149–165.

Leray C. Chapelle S., Duportail G. Changes in fluidity and 22:6(n-3) content in phospholipids of trout in testinal brush-boder membrane as related to environmental salinity. Biochim. Biophys. Acta: Biomembranes. 1994. Vol. 778, № 2. P. 233 238.

Leslie J. M. Buckley J. T. Phospholipid composition of gold fish (Carassius auratus L.) liver and brain and temperature-depence of phosphatidylcholine synthesis. Comp. Biochem. Physiol. 2006. Vol. 53B, № 3. P. 335 337.

Li M., Xia T.,. Jiang C. S et al. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology. 2003. Vol. 194. P. 19–33.

Marggraf W. D., Zertani R., Anderer F. A. The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts. Biochim. Biophys. Acta. 1982. Vol. 710. P. 314 323.

Merrill A. H. Sweely C. C. Sphingolipid: metabolism and cell signaling. Biochem. of lipids, lipoproteins and membranes. 1996. Vol. 31. P. 309–339.

Minghetti M., Leaver M. J., Tocher D. R. Transcriptional control mechanisms of genes of lipid and fatty acid metabolism in the Atlantic salmon (Salmo salar L.) established cell line, SHK-1. Biochim. Biophys. Acta: Mol. Cel. Biol. 2011. Vol. 1811. P. 194 202.

Neves A. A., Brindle K. M. Imaging cell death. J. Nucl. Med. 2014. Vol. 55, N 1. P. 1–4.

Olivera A. Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation in ducedby PDGF and FCS mitogens. Nature. 1993. Vol. 365. P. 557 560.

Patton J. S. The effect of pressure and temperature on phospholipid and trigliceride fatty acids of fish white muscle: a comparison of deepwater and surface marine species. Comp. Biochem. Physiol. 1995. Vol. 52B, № 1. P. 105 110.

Sargent J. R., Williamson I. P., Towse J. B. Metabolism of mevalonic acid in the liver of the dogfish Scyliorhinus caniculus. Biochem. J. 1998. Vol. 117, № 2. Р. 24 26.

Yang Z. H., Emma-Okon B., Remaley A. T. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: a mini review. Lipids in health and disease. 2016. Vol. 15(1). P. 201.




DOI: https://doi.org/10.25128/2078-2357.20.3-4.16

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 V. O. Khomenchuk, B. Z. Lyavrin, О. O. Rabchenyuk, V. Z. Kurant

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.